A localization inequality for set functions

نویسندگان

  • László Lovász
  • Michael E. Saks
چکیده

We prove the following theorem, which is an analog for discrete set functions of a geometric result of Lovász and Simonovits. Given two real-valued set functions f1, f2 defined on the subsets of a finite set S, satisfying ∑ X⊆S fi(X) 0 for i ∈ {1, 2}, there exists a positive multiplicative set function over S and two subsetsA,B ⊆ S such that for i ∈ {1, 2} (A)fi(A)+ (B)fi(B)+ (A∪B)fi(A∪ B) + (A ∩ B)fi(A ∩ B) 0. The Ahlswede–Daykin four function theorem can be deduced easily from this. © 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Results of the Chebyshev type inequality for Pseudo-integral

In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results  to the case of comonotone functions.

متن کامل

A companion of Ostrowski's inequality for functions of bounded variation and applications

A companion of Ostrowski's inequality for functions of bounded variation and applications are given.

متن کامل

Distance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study

To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...

متن کامل

JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2006